FROM: moeaaron (Barry Levine)
SUBJECT: Overtones revisited
> What does this really mean?  It means that the waveform deviates slighly
> from what it should.
>
> A saxophone waveform should be a "sawtooth wave", that is, one that rises
> vertically, comes down at a constant angle, rises vertically again, etc.
> It contains the fundamental and both odd numbered and even numbered
> overtones that combine to give the sawtooth waveform.
>
> A clarinet waveform should be a "square wave" or buttress shaped wave.  It
> is one that rises vertically, goes horizontal, falls vertically, goes
> horizontal, rises vertically, etc.  It contains the fundamental and only
> odd numbered overtones that combine to give the squarewave.
>
> But in the real world when these tones are graphed there are squiggles
> present which do not correspond to the the perfect waveforms we predict.
> Clarinet waveforms contain a small amount of a few even numbered overtones.
>  Saxophone tone may contain a higher amount of odd overtones than it
> should.  Usually the fundamental is weaker by several db than the 2 x f
> overtone.  And the 3 x f overtone is nearly as strong as the one just below
> it.

Finally got around to posting this question:

What the source of the information for the basic waveforms of these
instruments?

I have heard enough square waves (while playing with electronic music
circuits) to say with complete certainty that the harsh sound of a square
wave sounds not at all like a clarinet. Rather, at times clarinets  sound
almost like a pure sine wave.

Barry


FROM: newjazzsyndicate (Karsten J. Chikuri)
SUBJECT: Re: Overtones revisited
Dear Barry,
                 I agree with your point - I would even go further, by
saying that if one explores additive synthesis to any degree that they will
realize that *all* musical sounds are built up from sets of sine waves...
most synth wave forms (sine, square, sawtooth, etc.) are actually sine waves
that had been altered... then further processed through the ADSR and other
filters.
 
Each sine wave, in a set, corresponds to each harmonic in the harmonic
series....
 
FWIW
 
Sincerely,
               Karsten J. Chikuri
 


  _____  

From: MouthpieceWork@yahoogroups.com [mailto:MouthpieceWork@yahoogroups.com]
On Behalf Of Barry Levine
Sent: Thursday, October 25, 2007 3:39 PM
To: MouthpieceWork@yahoogroups.com
Subject: [MouthpieceWork] Overtones revisited



> What does this really mean? It means that the waveform deviates slighly
> from what it should.
>
> A saxophone waveform should be a "sawtooth wave", that is, one that rises
> vertically, comes down at a constant angle, rises vertically again, etc.
> It contains the fundamental and both odd numbered and even numbered
> overtones that combine to give the sawtooth waveform.
>
> A clarinet waveform should be a "square wave" or buttress shaped wave. It
> is one that rises vertically, goes horizontal, falls vertically, goes
> horizontal, rises vertically, etc. It contains the fundamental and only
> odd numbered overtones that combine to give the squarewave.
>
> But in the real world when these tones are graphed there are squiggles
> present which do not correspond to the the perfect waveforms we predict.
> Clarinet waveforms contain a small amount of a few even numbered
overtones.
> Saxophone tone may contain a higher amount of odd overtones than it
> should. Usually the fundamental is weaker by several db than the 2 x f
> overtone. And the 3 x f overtone is nearly as strong as the one just below
> it.

Finally got around to posting this question:

What the source of the information for the basic waveforms of these
instruments?

I have heard enough square waves (while playing with electronic music
circuits) to say with complete certainty that the harsh sound of a square
wave sounds not at all like a clarinet. Rather, at times clarinets sound
almost like a pure sine wave.

Barry



 

FROM: tenorman1952 (Paul C.)
SUBJECT: Re: Overtones revisited
Theoretically, the saxophone works like an "open pipe" which produces both odd and even numbered overtones.  These should add up to form a sawtooth wave.  Good theory, but it does not happen in real life.
   
  The clarinet is supposed to work like a "closed pipe", which produces only odd numbered overtones.  These should add up to form a square wave.  Again, good theory, but does not really happen.
   
  Many years ago experimenting with the early Arp and Moog synthesizers, which built their tones with sine, sawtooth, triangle, squarewave generators and filters, I could approach a very convincing clarinet tone by begining with a squarewave, and adding filtering.  However I found that if I allowed the filters to be controlled by the voltage that controlled frequency, that is, the filter followed the pitch, it was not realistic.  If I separated the filters, made them fixed filters that did not change with pitch being played, and adjusted the Q (sharpness of the filter) I could come up with a very convincing clarinet tone.  
   
  I think I was duplicating fixed resonances of the wood of the clarinet, the room, etc, by using the fixed filters.  It took me weeks to come up with settings to do this.  Even then, it worked only over a narrow range of about an octave.  Imitating the each register of the clarinet took a lot of tweaking of the filtering.  And it was not a simple thing to just drop the pitch an octave to sound like a bass clarinet.  No, I had to start all over to try to sound like a bass clarinet.
  
I spent months doing that, and never got around to duplicating a sax, trumpet, or other tone.
   
  Paul

Barry Levine <barrylevine@...> wrote:
          > What does this really mean? It means that the waveform deviates slighly
> from what it should.
>
> A saxophone waveform should be a "sawtooth wave", that is, one that rises
> vertically, comes down at a constant angle, rises vertically again, etc.
> It contains the fundamental and both odd numbered and even numbered
> overtones that combine to give the sawtooth waveform.
>
> A clarinet waveform should be a "square wave" or buttress shaped wave. It
> is one that rises vertically, goes horizontal, falls vertically, goes
> horizontal, rises vertically, etc. It contains the fundamental and only
> odd numbered overtones that combine to give the squarewave.
>
> But in the real world when these tones are graphed there are squiggles
> present which do not correspond to the the perfect waveforms we predict.
> Clarinet waveforms contain a small amount of a few even numbered overtones.
> Saxophone tone may contain a higher amount of odd overtones than it
> should. Usually the fundamental is weaker by several db than the 2 x f
> overtone. And the 3 x f overtone is nearly as strong as the one just below
> it.

Finally got around to posting this question:

What the source of the information for the basic waveforms of these
instruments?

I have heard enough square waves (while playing with electronic music
circuits) to say with complete certainty that the harsh sound of a square
wave sounds not at all like a clarinet. Rather, at times clarinets sound
almost like a pure sine wave.

Barry



                         


Link to Paul's articles from Main page of "Saxgourmet":
		http://www.saxgourmet.com
Listen to Paul's MP3's and view saxophone photos at:
           http://briefcase.yahoo.com/tenorman1952

Paul Coats is the sole US importer of SAXRAX products from 
http://www.saxrax.com 
For SAXRAX products, email Paul at saxraxus@...
 __________________________________________________
Do You Yahoo!?
Tired of spam?  Yahoo! Mail has the best spam protection around 
http://mail.yahoo.com 
FROM: kymarto (kymarto123@...)
SUBJECT: Re: Overtones revisited
This sounds like pure unadulterated BS to me. The sax produces nothing like a sawtooth wave, and the clarinet produces nothing like a square wave. Look here:

http://www.phys.unsw.edu.au/jw/clarinetacoustics.html#spectrum

Both produce complex permutations of sine waves.

Toby

Barry Levine <barrylevine@...> wrote:                               > What does this really mean?  It means that the waveform deviates slighly
 > from what it should.
 >
 > A saxophone waveform should be a "sawtooth wave", that is, one that rises
 > vertically, comes down at a constant angle, rises vertically again, etc.
 > It contains the fundamental and both odd numbered and even numbered
 > overtones that combine to give the sawtooth waveform.
 >
 > A clarinet waveform should be a "square wave" or buttress shaped wave.  It
 > is one that rises vertically, goes horizontal, falls vertically, goes
 > horizontal, rises vertically, etc.  It contains the fundamental and only
 > odd numbered overtones that combine to give the squarewave.
 >
 > But in the real world when these tones are graphed there are squiggles
 > present which do not correspond to the the perfect waveforms we predict.
 > Clarinet waveforms contain a small amount of a few even numbered overtones.
 >  Saxophone tone may contain a higher amount of odd overtones than it
 > should.  Usually the fundamental is weaker by several db than the 2 x f
 > overtone.  And the 3 x f overtone is nearly as strong as the one just below
 > it.
 
 Finally got around to posting this question:
 
 What the source of the information for the basic waveforms of these
 instruments?
 
 I have heard enough square waves (while playing with electronic music
 circuits) to say with complete certainty that the harsh sound of a square
 wave sounds not at all like a clarinet. Rather, at times clarinets  sound
 almost like a pure sine wave.
 
 Barry
 
 
     
                               
 
FROM: kymarto (kymarto123@...)
SUBJECT: Re: Overtones revisited
OK, now I get it. But theory and practice, as Paul points out, are two completely different things....

Toby

"Paul C." <tenorman1952@...> wrote:                               
Theoretically, the saxophone works like an "open pipe" which produces both odd and even numbered overtones.  These should add up to form a sawtooth wave.  Good theory, but it does not happen in real life.
   
  The clarinet is supposed to work like a "closed pipe", which produces only odd numbered overtones.  These should add up to form a square wave.  Again, good theory, but does not really happen.
   
  Many years ago experimenting with the early Arp and Moog synthesizers, which built their tones with sine, sawtooth, triangle, squarewave generators and filters, I could approach a very convincing clarinet tone by begining with a squarewave, and adding filtering.  However I found that if I
 allowed the filters to be controlled by the voltage that controlled frequency, that is, the filter followed the pitch, it was not realistic.  If I separated the filters, made them fixed filters that did  not change with pitch being played, and adjusted the Q (sharpness of the filter) I could come
 up with a very convincing clarinet tone.  
   
  I think I was duplicating fixed resonances of the wood of the clarinet, the room, etc, by using the fixed filters.  It took me weeks to come up with settings to do this.  Even then, it worked only over a narrow range of about an octave.  Imitating the each register of the clarinet took a lot of
 tweaking of the filtering.  And it was not a simple thing to just drop the pitch an octave to sound like a bass clarinet.  No, I had to start all over to try to sound like a bass clarinet.
  
I spent months doing that, and never got around to duplicating a sax, trumpet, or other tone.
   
  Paul

Barry Levine <barrylevine@...> wrote:
      > What does this really mean? It means that the waveform deviates slighly
> from what it should.
>
> A saxophone waveform should be a "sawtooth wave", that is, one that rises
> vertically, comes down at a constant angle, rises vertically again, etc.
> It contains the fundamental and both odd numbered and even numbered
> overtones that combine to give the sawtooth waveform.
>
> A clarinet waveform should be a "square wave" or buttress shaped wave. It
> is one that rises vertically, goes horizontal, falls vertically, goes
> horizontal, rises vertically, etc. It contains the fundamental  and only
> odd numbered overtones that combine to give the squarewave.
>
> But in the real world when these tones are graphed there are squiggles
> present which do not correspond to the the perfect waveforms we predict.
> Clarinet waveforms contain a small amount of a few even numbered overtones.
> Saxophone tone may contain a higher amount of odd overtones than it
> should. Usually the fundamental is weaker by several db than the 2 x f
> overtone. And the 3 x f overtone is nearly as strong as the one just below
> it.

Finally got around to posting this question:

What the source of the information for the basic waveforms of these
instruments?

I have heard enough square waves (while playing with electronic music
circuits) to say with complete certainty that the harsh sound of a square
wave sounds not at all like a clarinet. Rather, at times clarinets sound
almost like a pure sine  wave.

Barry






Link to Paul's articles from Main page of "Saxgourmet":
  http://www.saxgourmet.com
Listen to Paul's MP3's and view saxophone photos at:
           http://briefcase.yahoo.com/tenorman1952

Paul Coats is the sole US importer of SAXRAX products from 
http://www.saxrax.com 
For SAXRAX products, email Paul at saxraxus@... __________________________________________________
Do You Yahoo!?
Tired of spam?  Yahoo! Mail has the best spam protection around 
http://mail.yahoo.com 
     
                               
 
FROM: tenorman1952 (Paul C.)
SUBJECT: Re: Overtones revisited
Toby, Barry was quoting me.  But I also said, "But in the real world when these tones are graphed there are squiggles present which do not correspond to the the perfect waveforms we predict."
   
  You are quite correct.
   
  Paul


kymarto123@... wrote:
          This sounds like pure unadulterated BS to me. The sax produces nothing like a sawtooth wave, and the clarinet produces nothing like a square wave. Look here:

http://www.phys.unsw.edu.au/jw/clarinetacoustics.html#spectrum

Both produce complex permutations of sine waves.

Toby

Barry Levine <barrylevine@...> wrote:      > What does this really mean? It means that the waveform deviates slighly
> from what it should.
>
> A saxophone waveform should be a "sawtooth wave", that is, one that rises
> vertically, comes down at a constant angle, rises vertically again, etc.
> It contains the fundamental and both odd numbered and even numbered
> overtones that combine to give the sawtooth waveform.
>
> A clarinet waveform should be a "square wave" or buttress shaped wave. It
> is one that rises vertically, goes horizontal, falls vertically, goes
> horizontal, rises vertically, etc. It contains the fundamental and only
> odd numbered overtones that combine to give the squarewave.
>
> But in the real world when these tones are graphed there are squiggles
> present which do not correspond to the the perfect waveforms we predict.
> Clarinet waveforms contain a small amount of a few even numbered overtones.
> Saxophone tone may contain a higher amount of odd overtones than it
> should. Usually the fundamental is weaker by several db than the 2 x f
> overtone. And the 3 x f overtone is nearly as strong as the one just below
> it.

Finally got around to posting this question:

What the source of the information for the basic waveforms of these
instruments?

I have heard enough square waves (while playing with electronic music
circuits) to say with complete certainty that the harsh sound of a square
wave sounds not at all like a clarinet. Rather, at times clarinets sound
almost like a pure sine wave.

Barry




  
  

                         


Link to Paul's articles from Main page of "Saxgourmet":
		http://www.saxgourmet.com
Listen to Paul's MP3's and view saxophone photos at:
           http://briefcase.yahoo.com/tenorman1952

Paul Coats is the sole US importer of SAXRAX products from 
http://www.saxrax.com 
For SAXRAX products, email Paul at saxraxus@...
 __________________________________________________
Do You Yahoo!?
Tired of spam?  Yahoo! Mail has the best spam protection around 
http://mail.yahoo.com 
FROM: flemingml2000 (flemingml2000)
SUBJECT: Re: Overtones revisited
I recently had a discussion about this with my brother (novice 
saxophone) about why I liked my contrabass clarinet (I'm also a 
novice) more than my soprano clarinet or saxophones.  I had just 
read "New Directions for Clarinet" and it opened my eyes to the 
complexity of what I call a "note."  The book discusses the 
complexity and alternative fingerings that produce a primary note 
(the "meat") and what I see as the "seasonings," i.e., undertones, 
overtones, out-of-tones, un-tones, random tones, beyond tones, 
whatever you want to call them.  My brother's understanding is that 
anything other than a pure tone was best referred to as a mistaken 
tone, with the exception of maybe transitioning from one note to the 
next.  Could be that I didn't explain it right.

The infinite seasonings make practicing (using that term loosely) 
with the contrabass so much fun.  Close my eyes and play for hours.  
I finally split my lip the other night (actually early morning).  I 
got carried away.  

Seeing it on a scope would be interesting.  I can't imagine how most 
notes would produce an accurate sine wave, other than the ghost of a 
sine wave in a surf formed by various ripples and whitecaps.  When I 
hook up my Korg and tune up, it's just giving me a synopsis of what's 
really happening.  It would be interesting to see the whole picture.

Mark


FROM: kymarto (kymarto123@...)
SUBJECT: Re: Overtones revisited
Hi Paul,

I think I understood from your other post that what you are saying is that theoretically the math predicts that a stopped cone, with all the correct harmonics in the correct places at the correct amplitudes,  will be a series of sine waves that add up to a sawtooth wave, and that similarly for a
 stopped cylinder, they would add up to a square wave. We are, of course, talking "perfect circles" here, impossible to achieve in practice with such things as reed compliances and truncations and all the nasty artifacts of physical reality...

But that is interesting. I didn't know that the math predicted that.

Toby

"Paul C." <tenorman1952@...> wrote:                               
Toby, Barry was quoting me.  But I also said, "But in the real world when these tones are graphed there are squiggles present which do not correspond to the the perfect waveforms we predict."
   
  You are quite correct.
   
  Paul


kymarto123@... wrote:
      This sounds like pure unadulterated BS to me. The sax produces nothing like a sawtooth wave, and the clarinet produces nothing like a square wave. Look  here:

http://www.phys.unsw.edu.au/jw/clarinetacoustics.html#spectrum

Both produce complex permutations of sine waves.

Toby

Barry Levine <barrylevine@...> wrote:      > What does this really mean? It means that the waveform deviates slighly
> from what it should.
>
> A saxophone waveform should be a "sawtooth wave", that is, one that rises
> vertically, comes down at a constant angle, rises vertically again, etc.
> It contains the fundamental and both odd numbered and even numbered
> overtones that combine to give the sawtooth waveform.
>
> A clarinet waveform should be a "square wave" or buttress shaped wave. It
> is one that rises vertically, goes horizontal, falls vertically, goes
> horizontal, rises vertically, etc. It contains the  fundamental and only
> odd numbered overtones that combine to give the squarewave.
>
> But in the real world when these tones are graphed there are squiggles
> present which do not correspond to the the perfect waveforms we predict.
> Clarinet waveforms contain a small amount of a few even numbered overtones.
> Saxophone tone may contain a higher amount of odd overtones than it
> should. Usually the fundamental is weaker by several db than the 2 x f
> overtone. And the 3 x f overtone is nearly as strong as the one just below
> it.

Finally got around to posting this question:

What the source of the information for the basic waveforms of these
instruments?

I have heard enough square waves (while playing with electronic music
circuits) to say with complete certainty that the harsh sound of a square
wave sounds not at all like a clarinet. Rather, at times clarinets sound
almost like a pure  sine wave.

Barry




  
  





Link to Paul's articles from Main page of "Saxgourmet":
  http://www.saxgourmet.com
Listen to Paul's MP3's and view saxophone photos at:
           http://briefcase.yahoo.com/tenorman1952

Paul Coats is the sole US importer of SAXRAX products from 
http://www.saxrax.com 
For SAXRAX products, email Paul at saxraxus@... __________________________________________________
Do You Yahoo!?
Tired of spam?  Yahoo! Mail has the best spam protection around 
http://mail.yahoo.com 
     
                               
 
FROM: newjazzsyndicate (Karsten J. Chikuri)
SUBJECT: Re: Overtones revisited
Also - at least in the physical world, there is no way to "truly" produce a
pure square wave....
 
A square wave, in the pure sense - is created by an infinite number of sine
waves, all at equal (or close to equal) amplitude....
 
Because in the physical world, we deal with the harmonic series - the wave
set is more finite, which means that only an approximation of a square wave
can occur, that is; a wave graph with slight peaks and valleys where the
sine waves don't coincide... in other words, the "squiggles"...
 
I'm not an acoustician - but, I would be comfortable in predicting that a
similar situation occurs with sawtooth, and other "pure" waves...
 
Sincerely,
               Karsten J. Chikuri
 
 


  _____  

From: MouthpieceWork@yahoogroups.com [mailto:MouthpieceWork@yahoogroups.com]
On Behalf Of kymarto123@...
Sent: Friday, October 26, 2007 2:15 AM
To: MouthpieceWork@yahoogroups.com
Subject: Re: [MouthpieceWork] Overtones revisited



Hi Paul,

I think I understood from your other post that what you are saying is that
theoretically the math predicts that a stopped cone, with all the correct
harmonics in the correct places at the correct amplitudes,  will be a series
of sine waves that add up to a sawtooth wave, and that similarly for a
stopped cylinder, they would add up to a square wave. We are, of course,
talking "perfect circles" here, impossible to achieve in practice with such
things as reed compliances and truncations and all the nasty artifacts of
physical reality...

But that is interesting. I didn't know that the math predicted that.

Toby

"Paul C." <tenorman1952@...> wrote: 


Toby, Barry was quoting me.  But I also said, "But in the real world when
these tones are graphed there are squiggles present which do not correspond
to the the perfect waveforms we predict."
 
You are quite correct.
 
Paul


kymarto123@... wrote:

This sounds like pure unadulterated BS to me. The sax produces nothing like
a sawtooth wave, and the clarinet produces nothing like a square wave. Look
here:

http://www.phys.unsw.edu.au/jw/clarinetacoustics.html#spectrum

Both produce complex permutations of sine waves.

Toby

Barry Levine <barrylevine@...> wrote: 

> What does this really mean? It means that the waveform deviates slighly
> from what it should.
>
> A saxophone waveform should be a "sawtooth wave", that is, one that rises
> vertically, comes down at a constant angle, rises vertically again, etc.
> It contains the fundamental and both odd numbered and even numbered
> overtones that combine to give the sawtooth waveform.
>
> A clarinet waveform should be a "square wave" or buttress shaped wave. It
> is one that rises vertically, goes horizontal, falls vertically, goes
> horizontal, rises vertically, etc. It contains the fundamental and only
> odd numbered overtones that combine to give the squarewave.
>
> But in the real world when these tones are graphed there are squiggles
> present which do not correspond to the the perfect waveforms we predict.
> Clarinet waveforms contain a small amount of a few even numbered
overtones.
> Saxophone tone may contain a higher amount of odd overtones than it
> should. Usually the fundamental is weaker by several db than the 2 x f
> overtone. And the 3 x f overtone is nearly as strong as the one just below
> it.

Finally got around to posting this question:

What the source of the information for the basic waveforms of these
instruments?

I have heard enough square waves (while playing with electronic music
circuits) to say with complete certainty that the harsh sound of a square
wave sounds not at all like a clarinet. Rather, at times clarinets sound
almost like a pure sine wave.

Barry







Link to Paul's articles from Main page of "Saxgourmet":
http://www.saxgourmet.com
Listen to Paul's MP3's and view saxophone photos at:
http://briefcase.yahoo.com/tenorman1952

Paul Coats is the sole US importer of SAXRAX products from 
http://www.saxrax.com 
For SAXRAX products, email Paul at saxraxus@... 
__________________________________________________
Do You Yahoo!?
Tired of spam? Yahoo! Mail has the best spam protection around 
http://mail.yahoo.com 




 

FROM: jacquesf77 (jacques fuchs)
SUBJECT: RE : [MouthpieceWork] Overtones revisited
Sorry to correct it, but a square wave is a sum (ideally infinite, but with
10 harmonics, we are quite close to the « perfection”) of odd harmonics,
with suitable phase relationship :

 

The “square wave serie” is given by : 1/1*F1 + 1/3* F3 + 1/5*F5 + 1/7*F7+
1/9*F9…. Where F1 is the fundamental note.

 

The higher the harmonic, the lower the level….

 

Jacques 

 

-----Message d'origine-----
De : MouthpieceWork@yahoogroups.com [mailto:MouthpieceWork@yahoogroups.com]
De la part de Karsten J. Chikuri
Envoyé : samedi 27 octobre 2007 00:06
À : MouthpieceWork@yahoogroups.com
Objet : RE: [MouthpieceWork] Overtones revisited

 

Also - at least in the physical world, there is no way to "truly" produce a
pure square wave....

 

A square wave, in the pure sense - is created by an infinite number of sine
waves, all at equal (or close to equal) amplitude....

 

Because in the physical world, we deal with the harmonic series - the wave
set is more finite, which means that only an approximation of a square wave
can occur, that is; a wave graph with slight peaks and valleys where the
sine waves don't coincide... in other words, the "squiggles"...

 

I'm not an acoustician - but, I would be comfortable in predicting that a
similar situation occurs with sawtooth, and other "pure" waves...

 

Sincerely,

               Karsten J. Chikuri

 

 

 


  _____  


From: MouthpieceWork@yahoogroups.com [mailto:MouthpieceWork@yahoogroups.com]
On Behalf Of kymarto123@....jp
Sent: Friday, October 26, 2007 2:15 AM
To: MouthpieceWork@...m
Subject: Re: [MouthpieceWork] Overtones revisited

Hi Paul,

I think I understood from your other post that what you are saying is that
theoretically the math predicts that a stopped cone, with all the correct
harmonics in the correct places at the correct amplitudes,  will be a series
of sine waves that add up to a sawtooth wave, and that similarly for a
stopped cylinder, they would add up to a square wave. We are, of course,
talking "perfect circles" here, impossible to achieve in practice with such
things as reed compliances and truncations and all the nasty artifacts of
physical reality...

But that is interesting. I didn't know that the math predicted that.

Toby

"Paul C." <tenorman1952@...> wrote: 

Toby, Barry was quoting me.  But I also said, "But in the real world when
these tones are graphed there are squiggles present which do not correspond
to the the perfect waveforms we predict."

 

You are quite correct.

 

Paul


kymarto123@... wrote:

This sounds like pure unadulterated BS to me. The sax produces nothing like
a sawtooth wave, and the clarinet produces nothing like a square wave. Look
here:

http://www.phys.unsw.edu.au/jw/clarinetacoustics.html#spectrum

Both produce complex permutations of sine waves.

Toby

Barry Levine <barrylevine@...> wrote: 

> What does this really mean? It means that the waveform deviates slighly
> from what it should.
>
> A saxophone waveform should be a "sawtooth wave", that is, one that rises
> vertically, comes down at a constant angle, rises vertically again, etc.
> It contains the fundamental and both odd numbered and even numbered
> overtones that combine to give the sawtooth waveform.
>
> A clarinet waveform should be a "square wave" or buttress shaped wave. It
> is one that rises vertically, goes horizontal, falls vertically, goes
> horizontal, rises vertically, etc. It contains the fundamental and only
> odd numbered overtones that combine to give the squarewave.
>
> But in the real world when these tones are graphed there are squiggles
> present which do not correspond to the the perfect waveforms we predict.
> Clarinet waveforms contain a small amount of a few even numbered
overtones.
> Saxophone tone may contain a higher amount of odd overtones than it
> should. Usually the fundamental is weaker by several db than the 2 x f
> overtone. And the 3 x f overtone is nearly as strong as the one just below
> it.

Finally got around to posting this question:

What the source of the information for the basic waveforms of these
instruments?

I have heard enough square waves (while playing with electronic music
circuits) to say with complete certainty that the harsh sound of a square
wave sounds not at all like a clarinet. Rather, at times clarinets sound
almost like a pure sine wave.

Barry

 




Link to Paul's articles from Main page of "Saxgourmet":
http://www.saxgourmet.com
Listen to Paul's MP3's and view saxophone photos at:
http://briefcase.yahoo.com/tenorman1952

Paul Coats is the sole US importer of SAXRAX products from 
http://www.saxrax.com 
For SAXRAX products, email Paul at saxraxus@... 

__________________________________________________
Do You Yahoo!?
Tired of spam? Yahoo! Mail has the best spam protection around 
http://mail.yahoo.com 

 

 

FROM: newjazzsyndicate (Karsten J. Chikuri)
SUBJECT: Re: Overtones revisited
Correct - but, with "physical world" instruments, the higher up the series
you go - the lower the amplitude of each harmonic... a "pure" square wave is
constructed from a set (ideally infinite) of harmonics of equal amplitude...
 
Sincerely,
               Karsten J. Chikuri
 
P.S. - To the moderator(s) - this is getting to be a bit OT; even though
there isn't a lot of traffic here - please let me (us) know if this
conversation is getting beyond the preferred scope of this discussion
group.... I don't want to be blamed for OT noise....


  _____  

From: MouthpieceWork@yahoogroups.com [mailto:MouthpieceWork@yahoogroups.com]
On Behalf Of jacques fuchs
Sent: Friday, October 26, 2007 5:31 PM
To: MouthpieceWork@yahoogroups.com
Subject: RE : [MouthpieceWork] Overtones revisited






Sorry to correct it, but a square wave is a sum (ideally infinite, but with
10 harmonics, we are quite close to the « perfection”) of odd harmonics,
with suitable phase relationship :

 

The “square wave serie” is given by : 1/1*F1 + 1/3* F3 + 1/5*F5 + 1/7*F7+
1/9*F9…. Where F1 is the fundamental note.

 

The higher the harmonic, the lower the level….

 

Jacques 

 

-----Message d'origine-----
De : MouthpieceWork@yahoogroups.com [mailto:MouthpieceWork@yahoogroups.com]
De la part de Karsten J. Chikuri
Envoyé : samedi 27 octobre 2007 00:06
À : MouthpieceWork@yahoogroups.com
Objet : RE: [MouthpieceWork] Overtones revisited

 

Also - at least in the physical world, there is no way to "truly" produce a
pure square wave....

 

A square wave, in the pure sense - is created by an infinite number of sine
waves, all at equal (or close to equal) amplitude....

 

Because in the physical world, we deal with the harmonic series - the wave
set is more finite, which means that only an approximation of a square wave
can occur, that is; a wave graph with slight peaks and valleys where the
sine waves don't coincide... in other words, the "squiggles"...

 

I'm not an acoustician - but, I would be comfortable in predicting that a
similar situation occurs with sawtooth, and other "pure" waves...

 

Sincerely,

               Karsten J. Chikuri

 

 

 


  _____  


From: MouthpieceWork@yahoogroups.com [mailto:MouthpieceWork@yahoogroups.com]
On Behalf Of kymarto123@...
Sent: Friday, October 26, 2007 2:15 AM
To: MouthpieceWork@yahoogroups.com
Subject: Re: [MouthpieceWork] Overtones revisited

Hi Paul,

I think I understood from your other post that what you are saying is that
theoretically the math predicts that a stopped cone, with all the correct
harmonics in the correct places at the correct amplitudes,  will be a series
of sine waves that add up to a sawtooth wave, and that similarly for a
stopped cylinder, they would add up to a square wave. We are, of course,
talking "perfect circles" here, impossible to achieve in practice with such
things as reed compliances and truncations and all the nasty artifacts of
physical reality...

But that is interesting. I didn't know that the math predicted that.

Toby

"Paul C." <tenorman1952@yahoo.com> wrote: 

Toby, Barry was quoting me.  But I also said, "But in the real world when
these tones are graphed there are squiggles present which do not correspond
to the the perfect waveforms we predict."

 

You are quite correct.

 

Paul


kymarto123@... wrote:

This sounds like pure unadulterated BS to me. The sax produces nothing like
a sawtooth wave, and the clarinet produces nothing like a square wave. Look
here:

http://www.phys.unsw.edu.au/jw/clarinetacoustics.html#spectrum

Both produce complex permutations of sine waves.

Toby

Barry Levine <barrylevine@...> wrote: 

> What does this really mean? It means that the waveform deviates slighly
> from what it should.
>
> A saxophone waveform should be a "sawtooth wave", that is, one that rises
> vertically, comes down at a constant angle, rises vertically again, etc.
> It contains the fundamental and both odd numbered and even numbered
> overtones that combine to give the sawtooth waveform.
>
> A clarinet waveform should be a "square wave" or buttress shaped wave. It
> is one that rises vertically, goes horizontal, falls vertically, goes
> horizontal, rises vertically, etc. It contains the fundamental and only
> odd numbered overtones that combine to give the squarewave.
>
> But in the real world when these tones are graphed there are squiggles
> present which do not correspond to the the perfect waveforms we predict.
> Clarinet waveforms contain a small amount of a few even numbered
overtones.
> Saxophone tone may contain a higher amount of odd overtones than it
> should. Usually the fundamental is weaker by several db than the 2 x f
> overtone. And the 3 x f overtone is nearly as strong as the one just below
> it.

Finally got around to posting this question:

What the source of the information for the basic waveforms of these
instruments?

I have heard enough square waves (while playing with electronic music
circuits) to say with complete certainty that the harsh sound of a square
wave sounds not at all like a clarinet. Rather, at times clarinets sound
almost like a pure sine wave.

Barry

 




Link to Paul's articles from Main page of "Saxgourmet":
http://www.saxgourmet.com
Listen to Paul's MP3's and view saxophone photos at:
http://briefcase.yahoo.com/tenorman1952

Paul Coats is the sole US importer of SAXRAX products from 
http://www.saxrax.com 
For SAXRAX products, email Paul at saxraxus@... 

__________________________________________________
Do You Yahoo!?
Tired of spam? Yahoo! Mail has the best spam protection around 
http://mail.yahoo.com